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A theory of object recognition: computations and circuits in the feedforward path of
the ventral stream in primate visual cortex
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Abstract

We describe a quantitative theory to account for the computations performed by the feedforward path of
the ventral stream of visual cortex and the local circuits implementing them. We show that a model instan-
tiating the theory is capable of performing recognition on datasets of complex images at the level of human
observers in rapid categorization tasks. We also show that the theory is consistent with (and in some case
has predicted) several properties of neurons in V1, V4, IT and PFC. The theory seems sufficiently com-
prehensive, detailed and satisfactory to represent an interesting challenge for physiologists and modelers:
either disprove its basic features or propose alternative theories of equivalent scope. The theory suggests
a number of open questions for visual physiology and psychophysics.
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1 Introduction

Preface By now, there are probably several hundreds models about visual cortex. The very large majority
deals with specific visual phenomena (such as specific visual illusions) or with specific cortical areas or
specific circuits. Some of them have provided a useful contribution to Neuroscience and a few had an
impact even on physiologists [Carandini and Heeger, [1994; [Reynolds et al., [1999]. Very few address a
generic, high-level computational function such as object recognition (see [Fukushima), (1980; |Amit and
Mascaro, 2003; Wersing and Koerner, 2003; Perrett and Oram) 1993]). We are not aware of any model
which does it in a quantitative way while being consistent with psychophysical data on recognition and
physiological data throughout the different areas of visual cortex while using plausible neural circuits. In
this paper, we propose a quantitative theory of object recognition in primate visual cortex that 1) bridges
several levels, from biophysics to physiology, to behavior and 2) achieves human level performance in
rapid recognition of complex natural images. The theory is restricted to the feedforward path of the ventral
stream and therefore to the first 150 ms or so of visual recognition; it does not describe top-down influences,
though it is in principle capable of incorporating them.

Recognition is computationally difficult. The visual system rapidly and effortlessly recognizes a large
number of diverse objects in cluttered, natural scenes. In particular, it can easily categorize images or parts
of them, for instance as faces, and identify a specific one. Despite the ease with which we see, visual
recognition — one of the key issues addressed in computer vision - is quite difficult for computers and is
indeed widely acknowledged as a very difficult computational problem. The problem of object recognition
is even more difficult from the point of view of Neuroscience, since it involves several levels of under-
standing from the information processing or computational level to the level of circuits and of cellular and
biophysical mechanisms. After decades of work in striate and extrastriate cortical areas that have produced
a significant and rapidly increasing amount of data, the emerging picture of how cortex performs object
recognition is in fact becoming too complex for any simple, qualitative “mental” model. It is our belief
that a quantitative, computational theory can provide a much needed framework for summarizing and
organizing existing data and for planning, coordinating and interpreting new experiments.

Recognition is a difficult trade-off between selectivity and invariance. The key computational issue in
object recognition is the specificity-invariance trade-off: recognition must be able to finely discriminate be-
tween different objects or object classes while at the same time be tolerant to object transformations such
as scaling, translation, illumination, viewpoint changes, change in context and clutter, non-rigid transfor-
mations (such as a change of facial expression) and, for the case of categorization, also to shape variations
within a class. Thus the main computational difficulty of object recognition is achieving a very good trade-
off between selectivity and invariance.

Architecture and function of the ventral visual stream. Object recognition in cortex is thought to be me-
diated by the ventral visual pathway [Ungerleider and Haxby), 1994 running from primary visual cortex,
V1, over extrastriate visual areas V2 and V4 to inferotemporal cortex, IT. Based on physiological experi-
ments in monkeys, IT has been postulated to play a central role in object recognition. IT in turn is a major
source of input to PFC involved in linking perception to memory and action [Miller, 2000].

Over the last decade, several physiological studies in non-human primates have established a core of
basic facts about cortical mechanisms of recognition that seem to be widely accepted and that confirm and
refine older data from neuropsychology. A brief summary of this consensus of knowledge begins with the
groundbreaking work of Hubel & Wiesel first in the cat [Hubel and Wiesel, 1962, [1965b] and then in the
macaque monkey [Hubel and Wiesel, [1968]. Starting from simple cells in primary visual cortex, V1, with
small receptive fields that respond preferably to oriented bars, neurons along the ventral stream [Perrett
and Oram) 1993} Tanaka), [1996; |Logothetis and Sheinberg, (1996 show an increase in receptive field size as
well as in the complexity of their preferred stimuli [Kobatake and Tanakal [1994]. At the top of the ventral
stream, in anterior inferotemporal cortex (AIT), cells are tuned to complex stimuli such as faces [Gross et al.|
1972} Desimone et al., 1984} Desimone, (1991} Perrett et al., 1992].



The tuning of the view-tuned and object-tuned cells in AIT depends on visual experience as shown by
[Logothetis et al.,[1995] and supported by [Kobatake et al., [1998; DiCarlo and Maunsell, |2000; Logothetis
et al., 1995} Booth and Rolls| [1998]. A hallmark of these IT cells is the robustness of their firing to stimulus
transformations such as scale and position changes [Tanaka) [1996; [Logothetis and Sheinberg), (1996; [Logo-
thetis et al) [1995; Perrett and Oram), [1993]. In addition, as other studies have shown [Perrett and Oram)
1993; Booth and Rolls} 1998; |Logothetis et al.,[1995; Hietanen et al.,1992], most neurons show specificity for
a certain object view or lighting condition. In particular, Logothetis et al. [Logothetis et al., [1995] trained
monkeys to perform an object recognition task with isolated views of novel 3D objects (paperclips, see [Lo-
gothetis et al}[1995]]). When recording from the animals’ IT, they found that the great majority of neurons
selectively tuned to the training objects were view-tuned (with a half-width of about 20° for rotation in
depth) to one of the training objects (about one tenth of the tuned neurons were view-invariant, in agree-
ment with earlier predictions [Poggio and Edelman) 1990])), but exhibited an average translation invariance
of 4° (for typical stimulus sizes of 2°) and an average scale invariance of two octaves [Riesenhuber and
Poggiol[1999b]. Whereas view-invariant recognition requires visual experience of the specific novel object,
significant position and scale invariance seems to be immediately present in the view-tuned neurons [Lo-
gothetis et al.,[1995] without the need of visual experience for views of the specific object at different positions
and scales (see also [Hung et al.}, 2005a]. Whether invariance to a particular transformation requires expe-
rience of the specific object or not may depend on the similarity of the different views as assessed by the
need to access 3D information of the object (e.g., for in-depth rotations) or incorporate properties about its
material or reflectivity (e.g., for changes in illumination), see Note 4.

In summary, the accumulated evidence points to four, mostly accepted, properties of the feedforward
path of the ventral stream architecture: a) A hierarchical build-up of invariances first to position and scale
(importantly, scale and position invariance — over a restricted range — do not require learning specific to
an individual object) and then to viewpoint and other transformations (note that invariance to viewpoint,
illumination etc. requires visual experience of several different views of the specific object); b) An increasing
number of subunits, originating from inputs from previous layers and areas, with a parallel increase in size
of the receptive fields and potential complexity of the optimal stimulus !; ¢) A basic feedforward processing
of information (for “immediate” recognition tasks); d) Plasticity and learning probably at all stages with a
time scale that decreases from V1 to IT and PFC.

A theory of the ventral stream After the breakthrough recordings in V1 by Hubel & Wiesel there has
been a noticeable dearth of comprehensive theories attempting to explain the function and the architec-
ture of visual cortex beyond V1. On the other hand myriads of specific models have been suggested to
“explain” specific effects, such as contrast adaptation or specific visual illusions. The reason of course is
that a comprehensive theory is much more difficult, since it is highly constrained by many different data
from anatomy and physiology at different stages of the ventral stream and by the requirement of matching
human performance in complex visual tasks such as object recognition.

We believe that computational ideas and experimental data are now making it possible to begin describ-
ing a satisfactory quantitative theory of the ventral stream focused on explaining visual recognition. The
theory may well be incorrect — but at least it represents a skeleton set of claims and ideas that deserve to be
either falsified or further developed and refined.

The theory described in this paper has evolved over the last 6 years from a model introduced in [Riesen-
huber and Poggio, 1999Db], as the result of computer simulations, new published data and especially col-
laborations and interactions with several experimental labs (Logothetis in the early years and now Ferster,
Miller, DiCarlo, Lampl, Freiwald, Livingstone, Connor, Hegde and van Essen). The theory includes now
passive learning to account for the tuning and invariance properties of neurons from V2 to IT. When ex-
posed to many natural images the model generates a large set of shape-tuned units which can be interpreted
as a universal (redundant) dictionary of shape-components with the properties of overcompleteness and
non-uniqueness. When tested on real-world natural images, the model outperforms the best computer vi-
sion systems on several different recognition tasks. The model is also consistent with many — though not
all — experimental data concerning the anatomy and the physiology of the main visual areas of cortex, from
V1toIT.
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As required, the theory bridges several levels of understanding from the computational and psychophys-
ical one to the level of system physiology and anatomy to the level of specific microcircuits and biophysical
properties. Our approach is more definite at the level of the system computations and architecture. It
is more tentative at the level of the biophysics, where we are limited to describing plausible circuits and
mechanisms that could be used by the brain.

This version of the theory is restricted to the feedforward path in the ventral stream It is important to
emphasize from the outset the basic assumption and the basic limitation of the current theory: we only
consider the first 150 ms of the flow of information in the ventral stream — behaviorally equivalent to
considering “immediate recognition” tasks — since we assume that this flow during this short period of
time is likely to be mainly feedforward across visual areas (of course, anatomical work suggests that local
connectivity is even more abundant than feedforward connectivity [Binzegger et al.,[2004]; local feedback
loops almost certainly have key roles, as they do in our theory, see later and see [Perrett and Oram) [1993]).

It is well known that recognition is possible for scenes viewed in rapid visual presentation that do not
allow sufficient time for eye movements or shifts of attention [Potter| [1975]. Furthermore, EEG studies
[Thorpe et al.,[1996] provide evidence that the human visual system is able to solve an object detection task
— determining whether a natural scene contained an animal or not — within 150 ms. Extensive evidence
[Perrett et al.,[1992] shows that the onset of the response in IT neurons begins 80-100 ms after onset of the
visual stimulus and the response is tuned to the stimulus essentially from the very beginning [Keysers et al.|
2001]. Recent data [Hung et al.,|2005a]] show that the activity of small neuronal populations (around 100
randomly selected cells) in IT over very short time intervals (as small as 12.5 ms) after beginning of the neu-
ral response (80-100 ms after onset of the stimulus) contains surprisingly accurate and robust information
supporting a variety of recognition tasks. Finally, we know that the animal detection task [Thorpe et al.
1996|] can be carried out without top-down attention [Li et al., 2002]. Again, we wish to emphasize that none
of this rules out the use of local feedback — which is in fact used by the circuits we propose for the main two
operations postulated by the theory (see Section[5) — but suggests a hierarchical forward architecture as the
core architecture underlying “immediate” recognition.

Thus we ignore any dynamics of the back-projections and focus the paper on the feedforward architecture
of the visual stream and its role in the first 150 ms or so of visual perception. The basic steps for rapid
categorization are likely to be completed in this time, including tuned responses of neurons in IT. To be
more precise, the theory assumes that back-projections may play a “priming” role in setting up “routines”
in PFC or even earlier than IT — for simplicity let us think of “routines” as modulations of specific synaptic
weights — in a task-dependent way before stimulus presentation but it also assumes that backprojections
do not play a major dynamic role during the first 150 ms of recognition.

Normal vision and back-projections: a preliminary, qualitative framework Of course, a complete the-
ory of vertebrate vision must take into account multiple fixations, image sequences, as well as top-down
signals, attentional effects and the structures mediating them (e.g., the extensive back-projections present
throughout cortex). Thus, though our model at present ignores the effect of back-projections (or to be more
precise it assumes that there is no change in their effects during the short time intervals we consider here),
we state here our presently tentative framework for eventually incorporating their role.

The basic idea — which is not new and more or less accepted in these general terms — is that one key
role of back-projections is to select and modulate specific connections in early areas in a top-down fashion
— in addition to manage and control learning processes. Back-Projections may effectively run “programs”
for reading out specific task-dependent information from IT (for instance, one program may correspond to
the question “is the object in the scene an animal?”, another may read out information about the size of
the object in the image from activity in IT [Hung et al.,|2005a]). They may also select “programs” in areas
lower than IT (probably by modulating connection weights). During normal vision, back-projections are
likely to control in a dynamic way routines running at all levels of the visual system throughout attentional
shifts (and fixations). In particular, small areas of the visual fields may be “routed” from the appropriate
early visual area (as early as V1) by covert attentional shift controlled from the top to circuits specialized
for any number of specific tasks — such as vernier discrimination (see [Poggio and Edelman), 1990] and
Poggio’s Al Working Paper 258, “Routing Thoughts”, 1984). The routing mechanism could achieve the
desired invariances to position, scale and orientation and thereby reduce the complexity of learning the
specific task.



This highly speculative framework fits best with the point of view described by [Hochstein and Ahissar,
2002]. Its emphasis is thus somewhat different with respect to ideas related to prediction-verification recur-
sions — an approach known in Al as “hypothesis-verification” (see among others, [Hawkins and Blakeslee,
2002; [Mumford| [1996; [Rao and Ballard), [1999]). Hochstein and Ahissar suggested that explicit vision ad-
vances in reverse hierarchical direction, starting with “vision at a glance” (corresponding to our “immedi-
ate recognition”) at the top of the cortical hierarchy and returning downward as needed in a “vision with
scrutiny” mode in which reverse hierarchy routines focus attention to specific, active, low-level units. Of
course, there is a large gap between all of these ideas and a quantitative theory of the back-projections such
as the one described in this paper for the feedforward path in the ventral stream.

Plan of the paper The plan of this memo is as follows. We describe in the next section (Section [2)) the
theory, starting from its architecture, its two key operations and its learning stages. Section [3| shows that
an implementation of the theory achieves good recognition results on natural images (compared with com-
puter vision systems) and — more importantly — mimics human performance on rapid categorization tasks.
We then review the evidence (section [) about the agreement of the model with single cell recordings in
visual cortical areas (V1, V2, V4, IT). In Section we describe some of the possible “microcircuits” which
may implement the key operations assumed by the theory and discuss a possible “canonical” microcircuit
at their core. The final Section|f]discusses the state of the theory, its limitations, a number of open questions,
including critical experiments, and its extension to include top-down effects and cortical back-projections.
Throughout the paper, most of the details can be found in the appendices.

Notes
!The connection between complexity and size of the receptive field through the number of subunits

follows in fact from our theory (see later). The subunits are of the V1 simple cell type and possibly also of
the LGN center-surround type.

?In this paper, we use the term categorization to designate between-class object classification, the term
identification for classification within an object class and the term recognition for either task. Computationally,
there is no difference between categorization and identification (see [Riesenhuber and Poggio} [2000]).

3We have already used an earlier version of the theoretical framework described here — and its corre-
sponding model simulations — in on-going collaborations with physiology labs to drive a highly multidis-
ciplinary enterprise. Models provide a way to summarize and integrate the data, to check their consistency,
to suggest new experiments and to interpret the results. They are powerful tools in basic research, integrat-
ing across several levels of analysis - from molecular, to synaptic, to cellular, to systems, to complex visual
behavior.

“Note that some of the invariances may not depend on specific experience (e.g. learning how the appear-
ance of a specific object varies) but on more general learning over basic visual features. For instance, the
effects of 2D affine transformations, which consist of any combination of scaling, translation, shearing, and
rotation in the image plane, can be estimated in principle from just one object view. Generic mechanisms
in the system circuitry, independent of specific objects and object classes, can provide invariance to these
transformations for all objects.

°The previous model implementation (see [Riesenhuber and Poggio, [1999b]) of the theory was some-
times referred to as HMAX. The theory described here is a significant extension of it — mainly because
it includes learning stages in areas before IT — which was already planned in [Riesenhuber and Poggio,
1999b]. The early version of the model and the main differences with the present framework are listed in

Appendix

The theoretical work described in this paper started about 15 years ago with a simple model of view-
based recognition of 3D objects [Poggio and Edelman, |1990], which in turn triggered psychophysical ex-
periments [Biilthoff and Edelman) 1992] with paperclip objects previously introduced by Buelthoff and
Edelman and then psychophysical [Logothetis et al.}[1994] and physiological [Logothetis et al.,[1995] exper-
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iments in monkeys. The latter experiments triggered the development of a feedforward model [Riesenhu-
ber and Poggio, [1999b] of the ventral stream to explain the selectivity and invariance found in IT neurons.
The model, formerly known as HMAX, developed further into the theory described here as a direct effect of
close interactions and collaborations (funded by NIH, DARPA and NSF) with several experimental groups,
including David Ferster’s, Earl Miller’s, Jim DiCarlo’s, Ilan Lampl’s, Winrich Freiwald’s, Marge Living-
stone’s, Ed Connor’s, Aude Oliva’s and David van Essen’s, and with other close collaborators such as Max
Riesenhuber, Christof Koch and Martin Giese.

"The hierarchical organization of visual cortex may be due to the need to build-in those invariances (to
size, to position, to rotation) that do not need visual experience for the specific object but are valid for all
objects (and could be —in part or completely — built into the DNA specifications for the architecture of visual
cortex). This is not the case for illumination and viewpoint invariance that are the results of experience of
images under different viewpoints and illuminations for each specific object. In fact, whereas view-invariant
recognition requires visual experience of the specific novel object, position and scale invariance seems to
be immediately present in the view-tuned neurons of IT cortex without the need of visual experience for
views of the specific object at different positions and scales. It seems reasonable to assume that for object
recognition hierarchies arise from a) the need to obtain selectivity and invariance within the constraints
imposed by neuronal circuits, b) the need to learn from very few examples as biological organisms do and
c) the need to reuse many of the same units for different recognition tasks.



2 Quantitative framework for the ventral stream

2.1 Feedforward architecture and operations in the ventral stream

The main physiological data summarized in the previous section, together with computational consid-
erations on image invariances lead to a theory which summarizes and extends several previously existing
models [Hubel and Wiesel, (1962, 1965b; Poggio and Edelman) (1990; Perrett and Oram)|[1993;|Mel, [1997; Wal-
lis and Rolls, [1997; |[Riesenhuber and Poggio, [1999b), 2000; [Ellitfe et al., [2002; Thorpe, 2002; Amit and Mas-
caro, 2003] and biologically motivated computer vision approaches [Fukushimal |1980; |Fukushima et al.,
1983; [Fukushima), [1986; [LeCun) [1988; LeCun et al 1998} |Wersing and Koerner, 2003; LeCun et al., [2004].
The theory builds up on the classical Hubel & Wiesel model of simple and complex cells. We think that it
represents the simplest class of models reflecting the known anatomical and biological constraints.

The theory maintains that:

1. One of the main functions of the ventral stream pathway is to achieve an exquisite trade-off between
selectivity and invariance at the level of shape-tuned and invariant cells in IT from which many recog-
nition tasks can be readily accomplished;

2. The underlying architecture is hierarchical, aiming in a series of stages to increasing invariance to
object transformations and tuning to more specific features;

3. Two main functional types of units, simple and complex, represent the result of two main operations to
achieve tuning (S layer) and invariance (C layer);

4. The two corresponding operations are a normalized dot-product — for (bell-shaped) Gaussian-like tuning
of the simple units — and a softmax operation — for invariance (to some degree) to position, scale and
clutter of the complex units.

The overall architecture is sketched in Fig. We now describe its main features.

Mapping of computational architecture to visual areas. The model of Fig.[2.1| reflects the general orga-
nization of visual cortex in a series of layers from V1 to IT and PFC. The first stage of simple units (S1) —
corresponding to the classical simple cells of Hubel & Wiesel — represents the result of a first tuning opera-
tion: Each S1 cell, receiving LGN (or equivalent) inputs, is tuned in a Gaussian-like way to a bar of a certain
orientation among a few possible ones.

Each of the complex units (C1) in the second layer receives — within a neighborhood — the outputs of a
group of simple units in the first layer at slightly different positions and sizes but with the same preferred
orientation. The operation is a nonlinear softmax operation — where the activity of a pooling unit corre-
sponds to the activity of the strongest input, pooled over a set of synaptic inputs. This increases invariance
to local changes in position and scale while maintaining feature specificity.

At the next simple cell layer (52), the units pool the activities of several complex (C1) with weights
dictated by the unsupervised learning stage with different selectivities according to a Gaussian tuning
function, thus yielding selectivity to more complex patterns with different selectivities by means of a (bell-
shaped) Gaussian-like tuning function yielding selectivity to more complex patterns —such as combinations
of oriented lines. The S2 receptive fields are obtained by this non-linear combination of C1 subunits.

Simple units in higher layers (53 and 54) combine more and more complex features with a Gaussian
tuning function, while the complex units (C2 and C3) pool their outputs through a max function providing
increasing invariance to position and scale. In the model, the two layers alternate (though levels could be
conceivably skipped, see [Riesenhuber and Poggio| [1999b]; it is likely that only units of the S type follow
each other above C2 or C3). Also note that while the present implementation follows the hierarchy of the
Fig. the theory is fully compatible with a looser hierarchy.
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Figure 2.1: Tentative mapping between (right) functional primitives of the theory and (left) structural primitives of the
ventral stream in the primate visual system (modified from Van Essen and Ungerleider [1998]). Colors encode
the correspondences between model layers and brain areas. Stages of simple units with Gaussian-like tuning (plain
circles and arrows), which provide generalization [Poggio and Bizzi| 2004], are interleaved with layers of complex units
(dotted circles and arrows), which perform a softmax operation on their inputs and provide invariance to position and
scale (pooling over scales is not shown in the figure). Both operations may be performed by the same local recurrent
circuits of lateral inhibition (see text). It is important to point out that the hierarchy is probably not as strict as depicted
here. In addition there may be units with relatively complex receptive fields already in V1. The main route from the
feedforward ventral pathway is denoted with black arrows while the bypass route [Nakamura et al} [1993] is denoted
with yellow arrows. Learning in the simple unit layers from V4 up to IT (including the S4 view-tuned units) is assumed
to be stimulus-driven (though not implemented at present, the same type of learning may be present in V1, determining
receptive fields tuned to specific sets of LGN-like subunits). It only depends on task-independent visual experience
tuning of the units. Learning in the complex cell layers could, in principle, also be based on a task-independent trace
rule exploiting temporal correlations (see [1991]]). Supervised learning occurs at the level of the circuits in
PFC (two sets of possible circuits for two of the many different recognition tasks — identification and categorization —
are indicated in the figure at the level of PFC). The model, which is feedforward (apart from local recurrent circuits),
attempts to describe the initial stage of visual processing, immediate recognition, corresponding to the output of the top
of the hierarchy and to the first 150 milliseconds in visual recognition.
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2.1 Feedforward architecture and operations in the ventral stream

In addition it is likely that the same stimulus-driven learning mechanism implemented for S2 and above
(see later) operates also at the level of S1 units. In this case, we would expect S1 units with tuning not only
for oriented bars but also for more complex patterns, corresponding to the combination of LGN-like, center-
surround subunits. In any case, the theory predicts that the number of potentially active subunits (either of
the LGN- or of the simple units- type later on) increases from V1 to IT. Correspondingly the size as well as
the potential complexity of the receptive fields and the optimal tuning grow.

Two basic operations for selectivity and for invariance. The two key computational mechanisms in the
model are: (a) tuning by the simple S units to build object-selectivity and (b) softmax by the complex C units
to gain invariance to object transformations. The simple S units take their inputs from units that “look” at
the same local neighborhood of the visual field but are tuned to different preferred stimuli. These subunits
are combined with a normalized dot-product, yielding a bell-shaped tuning function, thus increasing object
selectivity and tuning complexity.

The complex C units pool over inputs from S units tuned to the same preferred stimuli but at slightly differ-
ent positions and scales through a softmax operation, thereby introducing tolerance to scale and translation.
This gradual increase in both selectivity and scale is critical to avoid both a combinatorial explosion in the
number of units, and the binding problem between features.

An approximative — and static — mathematical description of the two operations is given below — though
the most precise definition will be in terms of underlying biophysical micro-circuits (see Section [5, which
also provides the dynamics of the processing). The tuning operation, represented in simple S units, is
provided by:

k+ izj’
j=1

where z; is the response of the i-th pre-synaptic unit, w; the synaptic strength of the connection between
the i'" pre-synaptic unit and the simple unit y, k a constant (set to a small value to avoid zero-divisions)
and g is a sigmoid transfer function that controls the sharpness of tuning such that:

g(t) =1/(1+ =9, @)

The exponents p, ¢ and r represent the static nonlinearities in the underlying neural circuit. Such non-
linearity may arise from the sigmoid-like threshold transfer function of neurons, and depending on its
operating range, various degrees of nonlinearities can be obtained. Fig.2.2)indicates, along with a plausible
circuit for the tuning operation, possible locations for the synaptic nonlinearities p, g, and r, from Eq.

In general, when p < ¢r, y has a peak around some value proportional to the w;’s, that is (as in the
classical perceptron) when the input vector x is collinear to the weight vector w. For instance, when p = ¢r
(eg,p =1,¢ = 2and r = 1/2), a tuning behavior can be obtained by adding a fixed bias term b (see
Appendix and [Maruyama et al., 1991} [1992; Kouh and Poggio| 2004]). Even withr = 1 and p = ¢,
tuning behavior can be obtained if p < ¢ (e.g., p = 1 and ¢ = 1.2 or p = 0.8 and ¢ = 1). Note that the tuning
is determined by the synaptic weights w. The vector w determines — and corresponds to — the optimal or
preferred stimulus for the cell.

The softmax operation, represented in complex units, is given by:

q+1
Z Lj
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Figure 2.2: (a) One possible neural circuitry that performs divisive normalization and weighted sum. Depending
on different degrees of nonlinearity in the circuit (denoted by p, ¢ and r), the output y may be a tuning (Eq. [1) or an
invariance (Eq.[3) operation. The gain control, or the normalization mechanism in this case is achieved by a feedforward
shunting inhibition. Such circuit has been proposed in [Torre and Poggio, [1978; Reichardt et al., 1983} |Carandini and
Heeger}[1994]. The effects of shunting inhibition can be calculated from a circuit diagram like (b), see Section 5|

which is of the same form as the tuning operation (assume w; = 1 and p = ¢ + 1 in Eq.[I). For sufficiently
large g, this function approximates a maximum operation (softmax, see [Yu et al., 2002]). In particular, Eq.
yields tuning for r = 1, p = 1 ¢ = 2 and an approximation of max forr =1,p=2¢ = 1.

As we mentioned earlier, the description above is a static approximation of the dynamical operation
implemented by the plausible neural circuits described in Section [5} it is however the operation used in
most of the simulations described in this paper. One could give an even simpler — and more idealized —
description, which was used in earlier simulations [Riesenhuber and Poggio,(1999b] and which is essentially
equivalent in terms of the overall properties of the model.

In this description the tuning operation is approximated in terms of a multivariate Gaussian (which can
indeed approximate a normalized dot-product well — in a higher dimensional space, see [Maruyama et al.
1991]):

T (e —wj)?

Yy =exp 202 (4)

where o characterizes the width (or tuning bandwidth) of the Gaussian centered on w.
Similarly, in this simplified description, the softmax operation is described as a pure max that is:

y = maxa;. ®)

Despite the fact that a max operation seems very different from Gaussian tuning, Eq.[l|and Eq. 3| are re-

markably similar. Their similarity suggests similar circuits for implementing them, as discussed in Sectionp]
and shown in Fig.

Notes
In Eq. [1| the denominator in principle involves “all” inputs in the neighborhood, even the ones with

synaptic weights set to zero. For example, for simple units in V1, the denominator will include “all” LGN
inputs, not only the ones actually contributing to the excitatory component of the activity of the specific
simple unit. As a consequence, the denominator could normalize the activity across simple units in V1.
Studies such as [Cavanaugh et al., 2002] suggest that the normalization pool is probably larger than the
classical receptive field. In our present implementation both the numerator and denominator were limited
to the inputs within the “classical” receptive field of the specific simple unit, but we plan to change this in
future implementations using tentative estimates from physiology.
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2.2 Learning

?Note that a more general form of normalization in Eq.[]|would involve another set of synaptic weights
w in the denominator, as explored in a few different contexts such as to increase the independence of
correlated signals [Heeger et al.,|1996; |Schwartz and Simoncelli, 2001] and the biased competition model of
attention [Reynolds et al.,[1999].

3In Eq.[3, when p > ¢r (this condition is the opposite of the tuning function) and the output is scaled by
a sigmoid transfer function, the softmax operation behaves like a winner-take-all operation.

A prediction of the theory is that tuning and normalization are tightly interleaved. Tuning may be the
main goal of normalization and gain control mechanisms throughout visual cortex.

°An alternative to the tuning operation based on the sigmoid of a normalized dot-product (see Eq.[1) is a
sigmoid of a dot-product that is

n

y=g |y w;a"|, (6)
j=1

where g is the sigmoid function given in Eq. 2} Eq.[fis less flexible than Eq. [T} which may be tuned
to any arbitrary pattern of activations, even when the magnitudes of those activations are small. On the
other hand, a neural circuit for the dot-product tuning does not require the inhibitory elements and, thus,
is simpler to build. Also, with a very large number of inputs (high dimensional tuning), the total activation
of the normalization pool, or the denominator in Eq. |1, would be more or less constant for different input
patterns, and hence, the dot product tuning would work like the normalized dot product. In other words,
the normalization operation would only be necessary to build a robust tuning behavior with a small number
of inputs. It is conceivable that both Eq.[I|and Eq.[6|are used for tuning, with Eq.[6jmore likely in later stages
of the visual pathway.

6 A comparison of Gaussian tuning, normalized dot-products and dot-product with respect to the recog-
nition performance of the model is described in Appendix[A.4/and A short summary is that the three
similar tuning operations yield similar model performance on most tests we have performed so far.

"The model is quite robust with respect to the precision of the tuning and the max operations. This is
described in the Appendix which examines, in particular, an extreme quantization on the activity of
the S4 inputs (i.e., binarization, which is the case of single spiking axons — the “thin” cables of Section [5| -
over a short time intervals).

2.2 Learning

Various lines of evidence suggest that visual experience — during and after development — together with
genetic factors determine the connectivity and functional properties of units. In the theory we assume that
learning plays a key role in determining the wiring and the synaptic weights for the S and the C layers.
More specifically, we assume that the tuning properties of simple units — at various levels in the hierarchy
— correspond to learning combinations of “features” that appear most frequently in images. This is roughly
equivalent to learning a dictionary of patterns that appear with high probability. The wiring of complex
units on the other hand would reflect learning from visual experience to associate frequent transformations
in time — such as translation and scale — of specific complex features coded by simple units. Thus learning
at the S and C level is effectively learning correlations present in the visual world.

The S layers” wiring depends on learning correlations of features in the image at the same time; the C
layers’ wiring reflects learning correlations across time. Thus the tuning of simple units arises from learning
correlations in space (for S1 units the bar-like arrangements of LGN inputs, for 52 units more complex
arrangements of bar-like subunits, efc.). The connectivity of complex units arises from learning correlations
over time, e.g., that simple units with the same orientation and neighboring locations should be wired
together in a complex unit because often such a pattern changes smoothly in time (e.g., under translation).

13



2 Quantitative framework for the ventral stream

Figure 2.3: Sample natural images used to passively expose the model and tune units in intermediate layers to the
statistics of natural images.

At present it is not clear whether these two types of learning would require two different types of synap-
tic “rules” or whether the same synaptic mechanisms for plasticity may be responsible through slightly
different circuits, one involving an effective time delay. A third type of synaptic rule would be required for
the task-dependent, supervised learning at the top level of the model (tentatively identified with PFC).

In this paper we have quantitatively simulated learning at the level of simple units only (at the S2 level
and higher). We plan to simulate learning of the wiring at the level of C units in later work using the “trace”
rule (see [Foldiak| [1991} Rolls and Deco| [2002] for a plausibility proof). We also plan to simulate learning —
experimenting with a few plausible learning rules — from natural images of the tuning of S1 units, where
we expect to find mostly directional tuning but also more complex types of tuning. We should emphasize that
the implementation of learning in the model is at this point more open-ended than other parts of it because
little is known about learning mechanisms in visual cortex.

2.2.1 Learning a universal dictionary of shape-tuned (S) units: from S2 to S4 (V4 to AIT)

The tuning properties of neurons in the ventral stream of visual cortex, from V1 to inferotemporal cortex
(IT), play a key role for visual perception in primates and in particular for their object recognition abilities.
As we mentioned, the tuning of specific neurons probably depends, at least in part, on visual experience.
In the original implementation of the model [Riesenhuber and Poggio| [1999b], learning only occurred in
the top-most layers of the model (i.e., units corresponding to the view-tuned units in AIT
and the task-specific circuits from IT to PFC [Freedman et al/ 2001]). Because the model was ini-
tially tested on simplified stimuli (such as paperclips or faces on a uniform background), it was possible to
manually tune units in intermediate layers (simple 2 x 2 combinations of 4 orientations) [Riesenhuber and|
to be selective for the target object.

The original model did not perform well on large datasets of real-world images (such as faces with
different illuminations, background, expression, etc.) [Serre et al., 2002; [Louie, 2003]. Consistent with the
goals of the original theory [Riesenhuber and Poggio} [1999b], we describe here a simple biologically plau-
sible learning rule that determines the tuning of S units from passive visual experience. The learning rule
effectively generates a universal and redundant dictionary of shape-tuned units from V4 to IT that could, in
principle, handle several visual recognition tasks (e.g., face identification (“who is it?”), face categorization
("is it a face?”), as well as gender and expression recognition, efc.).
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2.2 Learning
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Figure 2.4: Imprinting process at the S level to generate a universal dictionary of shape-tuned units.

The rule we assume is very simple though we believe it will have to be modified somewhat to be bi-
ologically more plausible. Here we assume that during development neurons in intermediate brain areas
become tuned to the pattern of neural activity induced in the previous layer by natural images. This is a
reasonable assumption considering recent theoretical work that has shown that neurons in primary visual
cortex are tuned to the statistics of natural images [Olshausen and Field), 1996; Hyvarinen and Hoyer, 2001].

During training each unit in the simple layers (52, S2b and S3 sequentially) becomes tuned by exposing
the model to a set of 1,000 natural images unrelated to any categorization task. This image dataset was
collected from the web and includes different natural and artificial scenes, e.g., landscapes, streets, animals,
etc.; see Fig. 2.3). For each image presentation, starting with the S2 layer, some units become tuned to
the pattern of activity of their afferents. This training process can be regarded as an imprinting process
in which each S unit (e.g., S2 unit) stores in its synaptic weights the specific pattern of activity from its
afferents (e.g., C1 units) in response to the part of the natural image that falls within its receptive field. A
biologically plausible version of this rule could involve mechanisms such as LTP. In the model this is done
by setting, for each unit-type, the vector w in Eq. [I] (or equivalently Eq.[4) to the pattern of pre-synaptic
activity. For instance, when training the S2 layer, this corresponds to setting w to be equal to the activity
of the C1 afferent units x. The unit becomes tuned to the particular stimulus presented during learning,
i.e., the part of the natural image that fell within its receptive field during learning, which in turn becomes
the preferred stimulus of the unit. That is, the unit response is now maximal when a new input x matches
exactly the learned pattern w and decreases (with a bell-shape profile) as the new input becomes more
dissimilar. Fig.[2.4|sketches this imprinting process for the S2 layer. Learning at the S2b and S3 level takes
place in a similar way.

We assumed that the images move (shifting and looming) so that each type of S unit is being replicated
across the visual field. The tuning of units from S1 to C3 is fixed after this development-like stage. After-
ward, only the task-specific circuits from IT to PFC required learning for the recognition of specific objects
and object categories. It is important to point out that this same universal dictionary of shape-tuned units
(up to S4) is later used to perform the recognition of many different object categories (e.g., animals, cars,
facesetc. (see Section 3).

2.2.2 Task-dependent learning: from IT to PFC

As discussed in the introduction (see also the discussion), we assume that a particular “program” is set up
— probably in PFC — depending on the task. In a passive state (no specific visual task is set) there may be a
default routine running (perhaps the routine: what is there?). For this paper, we think of the routine running
in PFC as a (linear) classifier trained on a particular task in a supervised way and “looking” at the activity
of a few hundred neurons in IT. Note that a network comprising units in IT with a Gaussian-like tuning
function together with a linear classifier on their outputs, is equivalent to a regularized RBF classifier, which
is among the most powerful in terms of learning to generalize [Poggio and Bizzi| [2004].

Interestingly, independent work [Hung et al. 2005a] demonstrated that linear classifiers can indeed
read-out with high accuracy and over extremely short times (a single bin as short as 12.5 millisecond) object
identity, object category and other information (such as position and size of the object) from the activity of
about 100 neurons in IT (see Section [£.3.3).
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2 Quantitative framework for the ventral stream

When training the model to perform a particular recognition task, like the animal vs. non-animal cat-
egorization task presented in Section [3.2 for instance, S4 units (corresponding to the view-tuned units in
IT) are imprinted with examples from the training set (e.g., animal and non-animal stimuli in the animal
detection task, car and non-car stimuli for car detection, etc.). As for the S2, S2b and S3 units, imprinting
of a particular S4 unit consists in storing in its synaptic weights w the precise pattern of activity from its
afferents (i.e., C3 and C2b units with different invariance properties) by a particular stimulus. Again the
reader can refer to Fig.[2.4|for an example of imprinting. In all simulations presented in this paper, we only
used 1 of the entire stimulus set available for training to imprint the 54 units, while we used the full set to
learn the synaptic weights of the linear classifier that “looks” at IT.

The linear classifier from IT to PFC used in the simulations corresponds to a supervised learning stage
with the form:

iwa‘ ()"
k+ (D)

f(x)= ZciK(xi,x) where K(x',x) =g (7)

characterizes the response of the i*" S4 unit tuned to the training example x' (animal or non-animal) to the
input image x and c is the vector of synaptic weights from IT to PFC. The superscript i indicates the index
of the image in the training set and the subscript j indicates the index of the pre-synaptic unit. Since the S4
units (corresponding to the view-tuned units in IT) are like Gaussian radial basis functions (RBFs), the part
of the network in Fig.[2.T|comprising the inputs to the S4 units up to PFC can be regarded as an RBF network
(see Appendix [A.6)). Supervised learning at this stage involves adjusting the synaptic weights ¢ so as to
minimize a (regularized) error on the training set. The reader can refer to Appendix[A.6|for complementary
remarks and connections between RBF networks and cortical circuits in PFC.

2.2.3 Training the model to become an expert by selecting features for a specific set of objects

To improve further performance on a specific task it is possible to select a subset of the S units that are
selective for a target-object class (e.g., face) among the universal dictionary — e.g., the very large set of all S
units learned from natural images. This step can be applied on all S2, S2b and S3 units (sequentially) so
that, at the top of the hierarchy, the view-tuned units (S4) receive inputs from object-selective afferents only.

This step is still task independent as the same basic units (S2, S2b, S3 and S4 units) would be used
for different tasks (e.g., face- detection, -identification, or gender-recognition). This learning step improves
performance with respect to using the “universal” dictionary of features extracted from natural images (see
Fig.[2.3) but the latter already produce excellent performances in a variety of tasks. Thus selection of specific
features is not strictly needed and certainly is not necessary initially for recognition tasks with novel sets of
objects.

Our preliminary computational experiments suggest that performance on specific recognition tasks
when only a few (supervised, e.g., an input pattern x and its label y pairs) examples of the new task are
available is higher if the universal dictionary is used; on the other hand, when the number of labeled examples
increase, selection of tuned units appropriate for the task increases performance. In summary, an organism
would do fine in using the universal features in the initial phase of dealing with a new task but would do
better by later selecting appropriate features (e.g., tuned units) out of this dictionary when more experience
with the task becomes available.

The proposed approach seek good units to represent the target-object class, i.e., units that are robust to
target-object transformations (e.g., inter-individuals variations, lighting, pose, etc.). A detailed presentation
of the learning algorithm is provided in Appendix By presenting the model with sequences of images
that contain the target-object embedded in various backgrounds (see Fig. [3.2|for typical stimuli used), the
algorithm selects features that are robust against clutter and within-class shape variations. In another set-
ting, the model could be exposed to an image sequence of the target-object (e.g., a face) undergoing a series
of transformations (e.g., a face rotating in depth to learn a pose-invariant representation). Note that learning
here is unsupervised and the only constraint is for the model to be presented with a short image sequence
containing the target-object in isolation. &
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2.2 Learning

Notes
$While we did not test for tolerance to distractors, we expect the learning scheme to be robust to the

short presentation of distractors.

9Tt should be clear that the model is a convenient way to summarize known facts and to ask through
quantitative computer simulations a number of questions relevant for experiments; it is very much a work-
ing hypothesis — a framework and a computational tool — rather than a complete, finished model. It will
certainly change — possibly in a drastic way — as an effect of the interaction with the psychophysical and
physiological experiments.

19As described in Table the model contains on the order of 107 units (these bounds are computed using
reasonable estimates for the 54 receptive field sizes and the number of different types of simple units inall S
layers). This number may need to be increased by no more than one or two orders or magnitude to obtain an
estimate of the number of biological neurons which are needed —based on the circuits described in Sectionp]
and speculations on the “cable hypothesis” (see Section[5). This estimate results in about 10% — 10° actual
neurons, which corresponds to about 0.01% to 1% of visual cortex (based on 10! neurons in cortex [Kandel
et al.|[2000]). This number is far smaller than the proportion of cortex taken by visual areas.

'We shall emphasize that, even though the number above was computed for a version of the model
trained to perform a single (binary) animal vs. non-animal classification task — because the same basic dictio-
nary of shape-tuned units (i.e., from S1 up to 54) is being used for different recognition tasks — this number
would not change significantly for a more realistic number of categories. In particular, training the model
to recognize a plausible number of discriminable objects (i.e., probably no more than 30,000 [Biederman)
1987]), would add only an extra 107 S$4 units.

121t should be emphasized that the various layers in the architecture — from V1 to IT — create a large redun-
dant dictionary of features with different degrees of selectivity and invariance. It may be advantageous for
circuits in later areas (say classifier circuits in PFC) to have access not only to the highly invariant and selec-
tive units of AIT but also to less invariant and simpler units of the V2 and V4 type. For instance recent work
(in submission) by Bileschi & Wolf has shown that the performance of the model on the 101 object database
(see section[3and [Serre et al.,2005¢]) containing different objects with large variations in shape but limited
ranges of positions and scales could be further improved by 1) restricting the range of invariance of the top
units and 2) passing some of the C1 unit responses to the classifier along with the top unit responses. We
also found in the animal vs. non-animal categorization task of Section [3|that performance were improved
with S4 units that not only received their inputs from the top (C3) units but also from low-level C1 units
(with limited invariance to position and scale) and C2b units (of intermediate complexity with some range
of invariance). Finally preliminary computational experiments by Meyers & Wolf suggest for instance that
“fine” recognition tasks (such as face identification) may benefit from using C1 inputs vs. 54 inputs. In
cortex there exist at least two ways by which the response from lower stages could be incorporated in the
classification process: 1) Through bypass routes [Nakamura et al.|[1993] (for instance through direct projec-
tions between intermediate areas and PFC) and / or 2) by replicating some of the unit types from one layer
to the next. This would suggest the existence of cells such as V1 complex cells along with the bulk of cells
in the various stages of visual cortex. We are of course aware of the potential implications of observation
(1) for how back-projections could gate and control inputs from lower areas to PFC in order to optimize
performance in a specific task. From the same point of view, direct connections from lower visual areas to
PFC make sense.
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2 Quantitative framework for the ventral stream

Layers || Number of units
S1 1.6 x 10°
C1 2.0 x 104
S2 1.0 x 107
C2 2.8 x 10°
S3 7.4 x 104
C3 1.0 x 10%
S4 1.5 x 102
S2b 1.0 x 107
C2b 2.0 x 10°
Total 2.3 x 107

Table 1: Number of units in the model. The number of units in each layers was calculated for the animal vs. non-animal
categorization task presented in Section 3.2} i.e., 54 (IT) receptive fields (RF) of 4.4° of visual angle (160 x 160 pixels,
probably not quite matching the number of photoreceptors in the macaque monkey in that foveal area of the retina)
and about 2, 000 unit types in each S2, S2b and S3 layers.
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3 Performance on Natural Images

In this section we report results obtained with the model on natural image databases. We first show that the
model can handle the recognition of many different object categories presenting results on a database of 101
different objects [Fei-Fei et al., 2004] from the Caltech vision group. We also briefly summarize results that
show than the model outperforms several other benchmark Al systems (see [Serre et al., 2004, |2005¢] for
details). Most importantly we show that the model perform at human level on a rapid animal / non-animal
recognition task.

3.1 Comparison with state-of-the-art Al systems on different object categories

To evaluate the plausibility of the theory, we trained and tested the model on a real-world object recog-
nition database, called the Caltech 101-object category database |Fei-Fei et al., 2004]. The database contains
101 different object categories as well as a “background” category that does not contain any object. Im-
ages were collected from the web using various search engines. This is a challenging database as it con-
tains images from many different object-categories with variations in shapes, clutter, pose, etc.Importantly
the set of images used from training the model was unsegmented, i.e., the target-object was embedded
in clutter. The database is publicly available at http://vision.caltech.edu/Image_Datasets/
Caltech101/Caltech101.htmi

The model was trained as indicated in Subsection First, for each object category, S units (S2, S2b
and S3) that are selective for the target-object class were selected using the TR learning algorithm (see Ap-
pendix from image sequences artificially generated with examples selected from a training set of im-
ages. In a second step 54 (view-tuned) units, receiving inputs from C2b and C3 units, were imprinted with
examples from the training set (that contains stimuli from both the target object class as well as distractors
from the “background” set) and a linear classifier corresponding to task-specific circuits running between
AIT and PFC was trained to perform an object present / absent recognition task (e.g., face vs. non-face,
rooster vs. non-rooster, etc.).

Fig. shows typical results obtained with the model on various object categories. With only a few
training examples (40 positive and 50 negative), the model is able to achieve high recognition rates on
many different object categories.

We also performed a systematic comparison between the model and other benchmark Al systems from
our own group as well as the Caltech vision group. For this comparison, we used five standard (Caltech)
datasets publicly available (airplanes, faces, leaves, cars and motorcycles) and two MIT-CBCL datasets
(faces and cars). Details about the datasets and the experimental procedure can be found in [Serre et al.|
2005¢| [2004]]. For this comparison we only considered a sub-component of the model corresponding to the
bypass route, i.e., the route projecting directly from V1/V2 (S1/C1) to IT (52b/C2b) thus bypassing V4, see
Fig. This was shown to constitute a good compromise between speed and accuracy for this application
oriented toward Al and computer vision. We also replaced the final classification stage (equivalent to an
RBF scheme [Poggio and Bizzi, 2004] in the model, which includes the S4 units in IT and the task-specific
circuits from IT to PFC) with a more standard “computer vision classifier” (Ada boost). This allowed for a
more rigorous comparison at the representation-level (model C2b units vs. computer vision features such
as SIFT [Lowe, 1999]], component-experts [Heisele et al., [2001; [Fergus et al., 2003; [Fei-Fei et al., 2004], or
fragments [[Ullman et al., 2002; Torralba et al., 2004]) rather than at the classifier level.

Fig. shows typical examples from the five Caltech datasets for comparison with the constellation
models [Weber et al.,|2000; [Fergus et al. 2003]]. Table [2|summaries our main results. The model performs
surprisingly well, better than all the systems we have so far considered. This level of performance was
observed for object recognition in clutter, for segmented object recognition and for texture recognition.
Extensive comparison with several state-of-the-art computer vision systems on several image dataset can
be found in [Serre et al., 2004, 2005¢; Bileschi and Wolf, 2005]. The source code that we used to run those
simulation is freely available online at http://cbcl.mit.edu/software-datasets

Notes
We would like to thank Max Riesenhuber, Jennifer Louie, Rodrigo Sigala and Robert Liu for their con-

tribution in earlier phases of this work.

?The model evaluation on real-world image datasets was done in collaborations with Lior Wolf and Stan
Bileschi.
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can handle many different recognition tasks. Here we show typical results from the 101-object
2004]. The model performance is indicated above each thumbnail, which represents a typical

example from the data

base. The performance was evaluated on a binary classification task, i.e., object present or absent

(the set of distractors was chosen from the database “background” category as in [Fei-Fei et al, 2004]). Each number
is the average of 10 random runs were the model was trained with only 50 negative and 40 positive training examples
selected at random and tested on 50 positive and 50 negative examples. The error measure is the roc area (i.e., the area
under the roc curve). The experimental procedure was the same as in [Fei-Fei et al.| 2004} Serre et al.| 2005c].

Datasets Al systems || Model
(CalTech) Leaves eber et al., 2000 84.0 97.0
(CalTech) Cars Fergus et al. 2003 84.8 99.7
(CalTech) Faces [Fergus et al., 2003 96.4 98.2
(CalTech)  Airplanes Fergus et al.,[2003 94.0 96.7
(CalTech)  Motorcycles  [Fergus et al.,[2003 95.0 98.0
(MIT-CBCL) Faces Heisele et al., 2001 90.4 95.9
(MIT-CBCL) Cars [Leung) 2004] 75.4 95.1

Table 2: Model vs. benchmark Al recognition systems. For the five Caltech datasets (leaves, cars, faces, airplanes,
motorbikes), where the task is object recognition in clutter we compare against benchmarks which are based on the
part-based generative model termed the constellation model [Weber et al.| 2000} [Fergus et al.}2003]. For the MIT-CBCL
face dataset we compare with a hierarchical SVM-based architecture that was by itself shown to outperform many other

face-detection systems

Heisele et al},[2001]. For the MIT-CBCL car dataset we compared to a system by 2004]

that uses fragments [Ullman et al} 2002] and AdaBoost.

20



3.2 Predicting human performance on a rapid-categorization task

Figure 3.2: Sample images from the five Caltech datasets. From top to bottom: airplanes, motorcycles, faces, leaves and
cars. Note that no color information is being used by the present version of the model to perform the task.

3.2 Predicting human performance on a rapid-categorization task

As we showed in the previous section, the theory provides a model that is capable of recognizing well
complex images, i.e., when tested on real-world natural images, a quantitative model implementing the
theory, competes with and may even outperform state-of-the-art computer vision systems on several cate-
gorization tasks (see also [Serre et al.,[2005c)b]l). This is quite surprising, given the many specific biological
constraints that the theory had to satisfy. It remained however still unclear whether any feedforward model
could duplicate human performance in natural recognition tasks. Below we show (in collaboration with Aude
Oliva [Serre et al.L 2005a])) that indeed the model performs at human level on a rapid animal / non-animal
categorization task [Thorpe et al.,[1996], a task for which it is believed that feedback loops do not play a
major role.
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3 Performance on Natural Images

3.3 Immediate recognition and feedforward architecture

All feedforward proponents recognize that normal, everyday vision includes top-down effects mediated
by the extensive anatomical back-projections found throughout visual cortex. Back-projections are likely to
effectively run “programs” for reading out specific task-dependent information from IT (e.g., is the object in
the scene an animal? Or what is the approximate size of the object in the image [Hung et al., 2005a]]?) They
could also run specific routines in areas lower than IT - possibly by tuning or changing synaptic connection
weights. During normal vision, back-projections are likely to dynamically control routines running at all
levels of the visual system - throughout fixations and attentional shifts. Thus the key claim of feedforward
models is that the first 100-200 milliseconds of visual perception involves mainly feedforward processing
and that, during that time, complex recognition tasks are mostly accomplished by feedforward computa-
tions. In the same way as an experimental test of Newton’s second law requires choosing a situation in
which friction is negligible, we looked for an experimental paradigm in which recognition has to be fast
and cortical back-projections are likely to be inactive. The paradigm we chose is ultra-rapid object catego-
rization.

Ultra-rapid object categorization [Thorpe et al., [1996] likely depends only on feedforward process-
ing [Thorpe et al., 1996 Thorpe and Fabre-Thorpe, 2001; van Rullen and Koch} 2003b]]. Human observers
can discriminate a scene that contains a particular prominent object, like an animal or a vehicle after only
20 milliseconds of exposure; ERP components related to either low-level image features of the image cate-
gories (e.g., animal or vehicles) or to the image status (animal present or absent) are available at 80 and 150
milliseconds respectively. These experimental results establish an upper bound on how fast categorical de-
cisions can be made by the human visual system, and suggest that categorical decisions can be implemented
within a feed-forward mechanism of information processing [Thorpe et al} 1996} Thorpe and Fabre-Thorpe),
2001} |van Rullen and Koch) 2003b; Keysers et al., 2001].

3.4 Theory and humans

We selected [Serre et al) 2005a] a set of balanced animal and non-animal stimuli from a commercially
available database (Corel Photodisc) as in [Thorpe et al., [1996]. Animal stimuli are a rich class of stimuli as
they offer a large variety in texture, shape, size, etc. We selected and grouped six hundred animal images
into four categories, each category corresponding to a different viewing-distance from the camera: heads
(close-ups), close-body (animal body occupying the whole image), medium-body (animal in scene context)
and far-body (small animal or groups of animals in larger context). To make the task harder and prevent
subjects from relying on low-level cues such as image-depth, we carefully selected a set of six hundred
distractor images to match each of the four viewing-distances. Distractor images were of two types (three
hundred of each): artificial or natural scenes. Images were all converted to gray values. This is because a)
the model does not use color information, b) it has been previously shown that color is not diagnostic for
rapid animal vs. non-animal categorization task [Delorme et al., 2000] and c) this is easier to mask. Fig.
(inset) shows typical examples of the stimuli used in this experiment.

The model was trained in two steps as described in Section 2| First, in a task-independent stage, a
redundant dictionary of shape-tuned units (from V4 to IT, see Fig. is learned by passively exposing the
model with thousands of patches from natural images. During this stage S2 and S3 units are imprinted
with patches of natural images, which become their preferred stimuli. The second learning stage consists in
training the task-specific circuits, which may correspond to a routine running in PFC as a (linear) classifier
trained on a particular task in a supervised way and looking at the activity of a few hundred neurons in IT.
The final classifier was trained using 50 random splits on the stimuli database. In a typical run, half of the
images were selected at random for training and the model was tested on the remaining ones. Leave-out
evaluations of this kind have been shown to leave the best unbiased performance estimates. The model
performance was surprisingly good given the difficulty of the task (large variations in shape, size, position,
clutter) and relatively small training set.

In short images were briefly flashed for 20 ms, followed by an inter-stimulus interval of 30 ms, followed
by a mask (80 ms, 1/f noise). The parameters were chosen according to [van Rullen and Thorpe, 2001} Oliva
and Torralba, |In press|] to minimize the possibility of feedback, top-down effects in the task. Subjects were
asked to respond as fast as they could to the presence or absence of an animal in the image by pressing
either of two keys, see Fig.
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3.5 Results

3.5 Results

Performance of the model and of human subjects is similar, even in their pattern of errors (see Fig.[3.4). As
for the model, human subject performed best on “close-body” views and worst on “far-body” views. An
intermediate level of performance was obtained for “head” and “medium-far” views. Overall no significant
difference was found between the level of performance of the model and human subjects. To control for
the difficulty of the task, we ran several benchmark systems that rely on simple low-level features (such as
simple oriented filters or texture descriptors). Their level of performance was significantly lower (see
2005a])). Not only the level of performance achieved by the model and human subjects was very
similar, but we also found a high correlation between their errors (see [Serre et al.,[2005a])). This is consistent
with the claim that human subjects and the model use similar strategies.

The success of a feedforward model of the ventral stream - faithful to known quantitative measurements
in anatomy and physiology - in achieving human performance in rapid categorization task, and in mimick-
ing its mistakes, suggests that immediate recognition — or “vision at a glance” [Hochstein and Ahissar, 2002]
- is mainly feedforward over times of about 150 milliseconds from onset of the stimulus. It also raises the
hope that we may have the skeleton of a computational and functional model of the ventral stream of visual
cortex upon which we may now begin to graft many more detailed computational roles for specific visual
areas and neurons.

Stimulus (20 ms)

15/ (0-30 ms)

Mask (80 ms)

amimal presernt / absernt

Figure 3.3: Testing humans on an ultra-rapid animal vs. non-animal categorization task, modified from [Thorpe et al|
1996]. Each image was shown for 20 ms, followed by a mask appearing after a delay of 30 ms (1/f noise). At the end of
the trial, subjects had to press either of two keys for animal present or absent.
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Figure 3.4: Results obtained on the four animal categories (with matching distractors) for both humans and the model.
The performance is measured by the d’ value, which combines for each subject (or each run of the model on random
splits), the hit and false-alarm rates into a single standardized score [Macmillan and Creelman) m seel]). Error bars
indicate the standard error but there is no direct relation between errors as computed for the model and as computed
for human subjects. There is no significant difference in terms of performance between the model and human subjects.
Inset: Examples from the four image categories.

Notes
3The performance comparison between humans and the model was done in collaboration with Aude

Oliva.
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4 Visual areas

Predictions made by the original model The model interprets several existing data from system physiol-
ogy to cognitive science. The original model [Riesenhuber and Poggio| [1999b] made also a few predictions
ranging from biophysics to psychophysics. Table [3{summarizes the main model predictions.

Max operation in cortex The model predicted the existence of complex cells in V1 [Lampl
et al., 2004] and V4 [Gawne and Martin| [2002] performing a soft-
max pooling operation

Tolerance to eye movements | From the softmax operation — originally introduced to explain
invariance to translation in IT — the model predicts stability of
complex cells responses relative to small eye motions

Tuning properties of view- | The model has been able to duplicate quantitatively the gener-
tuned units in IT alization properties of IT neurons that remain highly selective
for particular objects, while being invariant to some transforma-
tions [Logothetis et al., [1995; Riesenhuber and Poggio, 1999b]
their tuning for pseudo-mirror views and generalization over
contrast reversal. Also, the model qualitatively accounts for
IT neurons responses to altered stimuli [Riesenhuber and Pog-
210}/1999b], i.e., scrambling [[Vogels| (1999], presence of distractors
within units receptive fields [Sato,{1989] and clutter [Missal et al.,
1997]

Role of IT and PFC in cate- | After training monkeys to categorize between “cats” and “dogs”,
gorization tasks we found that the ITC seems more involved in the analysis of
currently viewed shapes, whereas the PFC showed stronger cat-
egory signals, memory effects, and a greater tendency to encode
information in terms of its behavioral meaning [Freedman et al.,
2002 (see also subsection

Learned model C2 wunits | We have recently shown (see Subsection that C2 units that
compatible with V4 data were passively learned from natural images seem consistent with
V4 data, including tuning for boundary conformations [Pasu-
pathy and Connor), [2001], two-spot interactions|Freiwald et al.,
2005], gratings [Gallant et al), 1996, as well as the biased-
competition model [Reynolds et al.,[1999]

“Face inversion” effect The model has helped [Riesenhuber et al., [2004] guide control
conditions in psychophysical experiments to show that an effect
that appeared to be incompatible with the model turned out to
be an artifact

Table 3: Some of the correct predictions by the model
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4 Visual areas

41 V1and V2
411 Vi1

Our theory of the tuning operation assumes that tuning of simple cells in V1 is due jointly to the geometry
of the LGN inputs — corresponding to the non-zero synaptic weights w; in Eq.[1|— and to intracortical lat-
eral, possibly recurrent, inhibition implementing the normalization operation of Eq.[1} The activity of each
simple cell is normalized by the activity of its inputs (from the LGN via interneurons in the feedforward
case of Eq.[Tjor from other simple cells, mostly with different orientations in the recurrent case) over a large
neighborhood (possibly corresponding to the “non-classical” receptive field), since the normalization pool
should include LGN inputs which feed simple cells with other orientations.

In the current model implementation all stages from the retina to V1 are modeled in a single step,
i.e., simple cell like responses are obtained by directly filtering the input image with an array of Gabor filters
at four different orientations, different sizes and all positions (see Fig. [£.1). Also note that in the present
version of the model (unlike the original one [Riesenhuber and Poggio, (1999b]) all the V1 parameters are
derived exclusively from available V1 data and do not depend — as they did in part in the original HMAX
model — from the requirement of fitting the benchmark paperclip recognition experiments (see [Serre et al.,
2004] for a comparison between the new and the old model parameters). Thus the fitting of those paperclip
data by the new model is even more remarkable than in the original HMAX case. In Appendix we
describe how S1 and C1 parameters were adjusted so that the corresponding units would match the tuning
properties of cortical parafoveal cells in response to standard stimuli. In Appendix[A.2Jwe describe how the
tuning properties of S1 and C1 units was assessed and give a summary of the S1 and C1 tuning properties
(i.e., orientation and frequency tuning). The complete experiments are described in [Serre et al., 2004].

Notes
In our current model implementation this neighborhood is restricted to the classical receptive field.

There are many reports of surround suppression or other non-classical receptive field effects in V1 [Ca-
vanaugh et al.,2002]. Although the neural mechanisms for those effects remain controversial (e.g., feedback
from higher layer vs. lateral interaction), some of them can be explained by a divisive normalization by a
large summation field enclosing the classical receptive field. Such mechanism is similar to Eq.[T|and fits well
within our framework of the model. Hence, it would be possible to incorporate some of the non-classical
receptive field effects by enlarging the neighborhood for the normalization.

2t is interesting to notice that Eq. [1| is consistent with tuning of simple cells in V1 being due to the
LGN inputs and to intracortical inhibition (the denominator term). The tuning Eq.[1|and [2| predict that the
intracortical normalization sharpens the tuning induced by the afferent inputs (the non-zero w;). Thus the
overall receptive field of simple cells would depend on both the afferents from the LGN and on the more
numerous intracortical inputs. In the equations the inhibition is assumed to be feedforward but recurrent
inhibition may work in a similar way, at least in this version of the model which does not have any dynamics
(see also section5).

30ur theory suggest — from Eq. 3| describing the soft-max operation — that there exists a subclass of
complex cells which are driven by the most active of its simple cells (or simple cells-like) afferents.

4Livingstone & Conway [Livingstone and Conway, 2003|] reported an interesting pattern of nonlinear
interaction within the receptive field of direction-selective complex cells in V1. In Appendix[A.7, we show
how the converging inputs from simple cells combined with divisive normalization, both of which are
consistent with our framework of V1 complex cells, can create similar interaction patterns.
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Figure 4.1: The S1 unit receptive fields (Gabor functions). Receptive field sizes range from 0.19 to 1.07 degrees at
four different orientations. In order to obtain receptive field sizes within the bulk of the simple cell receptive fields
(~ 0.1 — 1 degree) reported in [Schiller et al} [1976a}[Hubel and Wiesel| [1965b], we cropped the Gabor receptive fields
and applied a circular mask so that, for a given parameter set (AY, 6Y), the tuning properties of units are independent of
their orientations ¢°. Note that the receptive fields were set on a gray background for display so as to preserve relative
s1zes

412 V2

In the present implementation of the model we do not distinguish between V1 and V2, effectively assuming
that V2 is equivalent to V1. It is however possible that V2 represents an additional stage of simple and
complex cells intermediate between V1 and V4 (which are not modeled at present). It is also possible that
the S2 cells of the model are mostly in V2 instead than V4 (whereas the C2 cells would probably be in V4,
according to the little physiological evidence on invariance of V4 responses to position).

Notes
A max operation could explain in part the stability against small eye movements (say 30 minutes of

arc or so, found in some complex cells (at various stages of the visual system) by Poggio and Motter (see
Poggio Al Working Paper 258, “Routing Thoughts”, 1984).

%In the present implementation of the model the tuning of the simple cells in V1 is hardwired. It is
likely that it could be determined thjrough the same passive learning mechanisms postulated for the 52
cells (possibly in V4 and PIT), possibly with a slower time scale and constrained to LGN center-surround
subunits. We would expect the automatic learning from natural images mostly of oriented receptive fields

but also of more complex ones, including end-stopping units (as reported for instance in [DeAngelis et al.
1992]] in layer 6 of V1).

"There is evidence for mechanisms in V1 and V2 which may support computations of Gestalt-like prop-
erties such as collinearity, filling-in (as demonstrated by illusory contours [Bakin et al., 2000]) and border
ownership (see [Zhou et al.,2000]). How to extend the model to account for these properties and how to
use them in recognition tasks is an interesting and still open question. Unlike the end-stopping units, these
properties may require feedback from higher areas such as V4. In future work we plan to test the model in
terms of recognition of figures based on illusory contours such as Kanisza triangle.
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4 Visual areas

42 V4
4.2.1 Properties of V4

Situated between V2 and IT, visual area V4 is known to have receptive fields of intermediate sizes (larger
than V1 and smaller than IT on average), tuning to features of intermediate complexity (more complex
than V1 and simpler than IT), and invariance to small translations [Kobatake and Tanaka}|{1994]. Although
first known for their color selectivity, neurons in V4 are selective to a wide variety of forms and shapes,
such as bars, gratings, angles, closed contour features, and sparse noise, etc. [Desimone et al.,[1985; Gallant
et al.,|1996; Pasupathy and Connor, 1999, [2001; [Freiwald et al., 2005|]. In addition, the selectivity of most V4
neurons described so far is invariant to small translations of about 25% of the receptive field. In this section,
we provide some supporting evidences for our theory by modeling individual V4 responses, predicting
responses to novel stimuli, and showing that learning from natural images produces a population of model
units with compatible statistics measured in several independent V4 experiments. Further results and
supporting simulations can be found in Appendix[A.§/and in [Cadieu) 2005].

The model assumes that there are simple (52) and complex (C2) computational units which differ in their
translational and scale invariance properties. The available data from V4 suggests that most of the reported
recordings are from C2-like cells (cells with a range of translation invariance that cannot be attributed to
the range of invariance from V1 complex cells). The model predicts the existence of S2-like cells. They may
at least in part be present in area V2 and feed directly to the C2-like cells in area V4. We do not think there
is enough evidence so far for ruling out the presence of simple and complex cells in V4 (the difference would
be mostly in the larger range of invariance to position and scale for C2 cells than S2 cells).

4.2.2 Modeling Individual V4 Responses

Selectivity The model is capable of reproducing V4 selectivity to both grating stimuli and boundary con-
formation stimuli independently. Eight response sets for V4 neurons (4 measured with the 366 boundary
conformation stimuli, referred to as B1, B2, B3, and B4; and 4 measured with the 320 grating stimuli, re-
ferred to as G1, G2, G3, and G4) were used to fit model units (C2 units). The result of fitting of neuron B2
is shown in Fig. and for G1 is shown in Fig. In both figures the response of the V4 neuron and the
model unit are plotted side by side for comparison. The magnitudes of those responses are displayed by
the gray level of each stimulus. Black indicates a high response, and light gray indicates a low response
with intermediate responses mapped linearly to intermediate shades of gray.

Both Fig.[f.2land Fig. [£.3]show a high degree of correspondences between the neural and the model re-
sponses. Stimuli that elicit high responses from the neuron also produce high responses in the model. The
degree of sparseness, or sharpness in selectivity, of these neurons is also captured in the model responses.
Similar results were achieved for the other 6 V4 neurons examined. Thus, selectivity that has previously
been described as tuning for concave or convex boundary elements or tuning for Cartesian, polar or hyper-
bolic gratings are also reproducible with the model. See Appendix for the fitting procedure of the V4
neural responses using the model.

Invariance While maintaining selective responses, model unit are also capable of reproducing invariance
properties of V4 neurons, on the currently available data set measuring featural and translational invari-
ance.

e Translation: Fig. 4.4 shows the responses to a preferred and non-preferred stimuli for V4 neuron
B3, adapted from Fig. 6A of [Pasupathy and Connor, [2001], and a model unit (C2 unit) over a 5x5
translation grid. The model unit yields high responses to the preferred stimuli over a translation range
comparable to the the V4 cell. For the non-preferred stimuli, the model unit shows low responses over
all translated positions. Hence, stimulus selectivity is preserved over translation for the model unit,
and the degree of translation invariance is similar to that of the V4 neuron. All model units examined
exhibit similar degrees of translation invariance.
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